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   Abstract

This paper investigates the feasibility of
synthesizing substructures modeled with compu-
tational neural networks.  Substructures are modeled
individually with computational neural networks and
the response of the assembled structure is predicted
by synthesizing the neural networks. A super-
position approach is applied to synthesize models for
statically determinate substructures while an interface
displacement collocation approach is used to
synthesize statically indeterminate substructure
models. Beam and plate substructures along with
components of a complicated Next Generation Space
Telescope (NGST) model are used in this feasibility
study.   In this paper, the limitations and difficulties
of synthesizing substructures modeled with neural
networks are also discussed.  

  Introduction

Virtual product development and real time
simulation are two key elements necessary for future
immersive design environment [1] in which
engineers will be able to create and modify their
designs, and the effects of their modifications can be
visualized   immediately.  The  use  of off-the-shelf
components (substructures) in developing new
products is faster and cheaper than creating new
designs for all the components and parts.  It is likely
that  many   new   aerospace  structure developments
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may involve trading off one off-the-shelf component
with another or relocating a component.   Therefore,
computational tools, which can facilitate the
evaluation of the effects of these substructure design
changes in real time, are highly desirable.  

Although the finite element method is widely
used for structural analysis of each component;
creating new models, modifying existing models,
and solving large systems of equations are all time
consuming and cannot provide the computational
speed required for the future immersive design
environment.  On the other hand, computational
neural networks [2] can be trained using analytical or
test data to model each component.  The trained
neural network model for each component
(substructure) has a small number of neurons and the
prediction of the component response is
computationally efficient.

Currently, complete aerospace vehicles are
being designed and manufactured by teams of
companies.  Substructure response cast into a
compact neural network model can ease the transfer
of design information from company to company
while protecting each companyÕs proprietary
information.  

For the aforementioned reasons, the capability
of synthesizing substructures modeled with neural
networks is critical for the success of implementing
a future immersive design environment.  Although
the procedures of synthesizing physics-based models
have been well developed [3,4], the procedures for
synthesizing substructures modeled with neural
networks can not be found in the literature.   The
only related reference is a paper written by the third
author [5] during the course of this study.   

The objective of this paper is to investigate the
feasibility of synthesizing substructures modeled
with computational neural networks.  A superpo-
sition approach and an interface displacement
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collocation approach are used for synthesizing
substructures modeled with neural networks.   Beam
and plate substructures along with components of a
Next Generation Space Telescope (NGST), are used
to illustrate the neural network substructure coupling
method.  The limitations, difficulties, and future
development are also discussed in this paper.   

  Feed-Forward Neural Networks

The inception of neural networks comes from
the recognition that the human brain functions in an
entirely different way from the conventional digital
computer.  The human brain may have more than 10
billion neurons that form a highly efficient parallel
information processing network.  A neural network
is designed to mimic brain functions using massive
interconnection processing units referred to as
Òneurons.Ó A neural network may contain an input
layer, an output layer, and a few hidden layers.  A
typical feed-forward neural network configuration
used in this study is presented in the Appendix.   

In the neural network model (Figure A in the
Appendix), the strength of a connection between two
neurons is referred to as ÒweightÕÕ.  The data from
input layer or hidden layers are multiplied by the
weights associated with a next-layer neuron and
sums together before processing by the neuron.
Before a neural network can perform useful
computations, its weights need to be adjusted
through a training scheme.  The back-propagation
technique is the most popular training scheme in
which the input data are propagated through the
network (feed-forward) and the output data are
calculated.  The errors between the desired output and
the calculated output are computed.  Then a
minimization procedure is used to adjust weights
between two connection layers starting backward
from the output layer to the input layer [6].

Back-propagation trained, multiple-layer feed-
forward neural networks in MATLABÕs Neural
Networks Toolbox [7] are used for this study.  In
this work, the Levenberg-Marquard update rule [8],
which combines the steepest descent search with the
Gauss-Newton method is used.  The weight update
formula is :

  DW J J I J eT T= + -( )m 1       (1)

where DW  is the iterative weight change, J  is the
Jacobian matrix of error derivatives with respect to

the weights, m  is a scalar control parameter, I is a

identity matrix, and the error vector is denoted by e .
If m  is large, the update formula approximates the

gradient descent.  If m  is small, the above formula

becomes the Gauss-Newton Method.  The Gauss-
Newton method is faster and more accurate near an
error minimum.  To shift towards the Gauss-Newton
method quickly, m  is decreased after each successful

iteration step and increased only when a step
increases the error.

  Beam Problems

To explore the neural network synthesizing
process, a statically determinate beam and a statically
indeterminate beam are analyzed.  Based on a
classical analysis, the statically determinate beam is
represented by two statically determinate
substructures as shown in Figure 1, a uniformly
loaded cantilever beam AB  and a simply supported
beam BC.  Computational neural networks, (NN)1

and  (NN)2, are used to model each substructure as
shown in Figure 1.  For statically determinate
substructures, substructure interface loads (i.e.  the
bending moment in this case) from (NN)1 are
directly used as an input to (NN)2 to obtain the
interface displacements (i.e.  the rotation in this
case).  The total tip deflection at point A is obtained
by the superposition method, i.e.

            d d qA Ba= + ´                   (2)
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Figure 1. Statically determinate beam and its
substructure neural networks.

A response surface of the tip deflection as a
function of the distributed load (w) and the cantilever
length (a), predicted by the neural networks
synthesizing procedure and the analytical solution,
are shown in Figure 2.  The tip deflection error of
the neural network prediction is plotted in Figure
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2(c).  The neural network coupling procedure
produces good results with small amount of errors.
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Figure 2. Comparison of neural network predictions
with analytical solutions.

The statically indeterminate beam problem is
shown in Figure 3.  The beam is split into two
statically indeterminate substructures as shown in
Figures 4a and 4b.  The interface loads (F and M)
between the two substructures cannot be statically
determined.  If the range of interface loads and
moments are given, substructures 1 and 2 can be
represented by neural nets (NN)1 and (NN)2,
respectively.  The input to (NN)1 is the P1 location
(a), interface force (F), and moment (M).  The input
to (NN)2 is the interface force, the interface

moment, and the load P2 location (b).  The output
of both networks is displacements at location x.
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Figure 3.  Statically indeterminate beam.
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Figure 4a. Substructure 1 modeled with neural
network (NN)1.
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Figure 4b.  Substructure 2 modeled with neural
network (NN)2.
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When these two substructure neural nets are
synthesized, the interface forces at point B  need to
be determined from the enforcement of compatibility
requirements.  Figures 5 and 6 illustrate an interface
displacement collocation approach in which the
compatibility of displacements along the interface of
adjacent substructures is established when the
differential displacements induced by the applied
forces are eliminated by the differential displacements
induced by the interface forces.  Two additional
neural networks, (NN)1* and (NN)2*, are used to
determine the interface forces. Differential
displacements between point B- and B+ for applied
loads P1 and P2 at various locations are computed.  
Neural network (NN)1* is trained using load

locations, 
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(NN)1* has the capability to predict the differential
displacements for applied loads at arbitrary locations
within the training range.   

Neural network (NN)2* is trained to solve an
inverse problem, so substructure interface forces can
be determined from given differential displacements.
To generate training data of (NN)2, various pairs of
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, are computed.  The neural network is

trained using differential displacements as input and
interface forces as output.  
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Figure 5. Differential displacements between Point
B- and B+ due to applied loads.
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B- and B+ due to interface loads.

The neural network (NN)2* is used to predict
the interface forces required to close the differential
displacements generated by network (NN)1* for any

loading locations, 
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b
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, as shown in Equation 3.
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The interface forces predicted by (NN)1* and
(NN)2* are compared with closed form solutions [9]
as shown in Table 1.  The differences of (NN)2*
predictions and the closed form solutions are within
three percent.  Once the interface forces are
determined, the structural response is determined
using neural networks (NN)1 and (NN)2.

   Application of Superposition Approach to
   Rigidly Connected Substructures    

To illustrate that the procedure of synthesizing
neural network models of substructures can be used
to predict the response of a large scale aerospace
structure, synthesis of two NGST substructures,
each modeled with a neural network, is performed.
A complete finite element model of the NGST is
shown in Figure 7.  In this study, the optical
telescope assembly and the science and spacecraft
module are assumed to be rigidly connected.
Concentrated loads are applied at various locations
along the tube of the optical telescope assembly and
the top end of the spacecraft module is assumed to be
fixed. The neural network models of the
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substructures are integrated and used to predict the
response of the full structure.   Static finite element
analysis results of the full model are also generated
for comparison.  

Applied Load

Fixed End

Science and
Spacecraft 
Module

Optical 
Telescope 
Assembly

Figure 7.  NGST finite element model.

Substructures of the NGST are modeled with two
neural networks, (NN)1 and (NN)2.  Procedures for
creating these networks are discussed in the
following sections.

       (NN)    1         :      The      Optical      Tel    escope      Assembly

Finite element analyses are performed on the
optical-telescope-assembly substructure to generate
training data.  The load is applied to the tube and the
interface hub is assumed to be fixed as shown in
Figure 8.  The (NN)1 input is the applied load and
the location of the applied load.  The output is
reaction forces at the interface hub and displacements
of the secondary mirror relative to the interface hub
as shown in Equation 4.
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Figure 8. The optical telescope assembly.
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  (NN)    2         :      The      Science     and      Spacecraft       Module

The finite element model of the science and
spacecraft module is analyzed with interface hub
loads in an estimated range and the top end of the
spacecraft module is fixed as shown in Figure 9.
Finite element results are used to train the neural
net.  The (NN)2 input is the interface hub loads and
the output is the interface hub displacements as
shown in Equation 5.

  

InterfaceHubLoads

NN InterfaceHubDisplacements

{ }
® ® { }( )2

     (5)

Interface Hub

Fixed End

Figure 9. The science and spacecraft module.

Output of neural network (NN)1 is used as
input to neural network (NN)2 for predicting the
interface hub displacements.  The NGSTÕs second
mirror deflection is predicted by the superposition
approach.  The results obtained from coupling  these
two neural networks are shown in Figure 10.  
Neural network results of the secondary mirror
deflection are shown as open circles.  The x symbols
are the finite element analysis results of the whole
NGST model.  Note the solid lines are the least
square fittings of the finite element results.
Reasonably accurate predictions from the coupling of
substructure neural networks are evident from Figure
10.  
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Figure 10. Comparison of the finite element model
results and the neural networks results.

   Application of the Interface Displacement
   Collocation Approach for Multipoint

   Connected Substructures  

The beam problems and the rigidly connected
NGST substructures are connected at a single point
only.  For multipoint connection problems, training
sets and sizes of neural nets are significantly
increased due to the increase of design variables. An
aluminum plate shown in Figure 11 is used to
illustrate a multiple point connection problem.  Two
plate substructures, shown in Figures 12a and 12b,
are connected at three points (A, B , and C).
Substructure 1, which includes an open hole, is
subjected to a moving line load of 100 lbs/in.
Design parameter, a, is the location of the line load.
Substructure 2 is subjected to a stationary line load
of 50 lbs/in. at 5-in. from the right end. The
dimensions of the plate are given in Figure 11.  

Moving 
line load,
100 lbs/in.

Fixed end

a
B

C

6 in.

22 in.

Fixed end

Stationary line 
load,
50 lbs/in.

A

Figure 11. Assembly of aluminum plate
substructures, 0.2 inches thick.

Two neural nets, (NN)1 and (NN)2, are trained
to model the responses of substructures 1 and 2,
respectively.  Figure 12a shows that the input of the
(NN)1 includes the line load location, a , the
interface force F , moment M , and finite-element
nodal  coordinates x and y.  The output of (NN)1 is

the nodal displacements, 
d
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.  Figure 12b shows

the input of (NN)2 is the interface force F , moment
M , and nodal coordinates x and y; the output of

(NN)2 is the nodal displacements, 
d

q

ì
í
î

ü
ý
þ2

.  These

nets are used to predict the responses of each
substructure once the interface forces are determined.
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Figure 12a. Substructure 1 modeled with (NN)1.
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The interface displacement collocation approach
is applied to determine the interface forces.  Two
additional neural nets, (NN)1* and (NN)2*, are
created to determine the interface forces and moments
between these two substructures.  The procedures
used to create the nets are as follows.  

   Neural      Net     (NN)    1    *  

To generate training data, finite element
analyses are performed on each substructure and the
interface differential displacements are computed as
shown in Figure 13.  Note that the substructures are
subjected to applied line loads only and there are no
interface forces applied on each substructure.  By
moving the line load on Substructure 1,
corresponding interface differential displacements can
be computed.  These data are used to train the neural
network (NN)1*.

, D qa
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Fixed end

Dd
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Figure 13. Substructures subjected to applied loads.

   Neural      Net     (NN)    2    *

To couple the two plate substructures to form
an assembled structure, the interface connecting
points are collocated by applying interface forces to
eliminate the differential displacements created by the
line loads.  This neural net establishes the
relationship between the differential displacements
and the interface forces as shown in Figure 14.  To
generate training data for (NN)2*, forces and
moments are applied at each of the three connecting
points.  Although these loads and moments are
unknown, the range of each of these interface loads,
however, can be estimated from a similar design or
from several finite element analyses of the assembled
structure.
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Figure 14. Substructures  subjected to  interface
forces.

The estimated ranges of each force and each
moment are divided by N data points which are
uniformly distributed in the range of interest.  If
there are M connecting points and each connecting
point has K connecting forces, the total number of
loading combinations is NM*K.  We use N=8, M=2
(symmetry), and K=2 for this plate problem.  A total
of 4,096 load combinations are created to generate
training data of (NN)2*.  The number of load
combinations can be very large when the number of
connecting points is increased.  Fortunately, these
loading cases are at the right hand side of the finite
element system equations of each substructure and
back substitution can be used to obtain the
displacements at the interface of each substructure for
computing the interface differential displacements.
(NN)2* is trained for predicting interface forces
using interface differential displacements as input.

In the substructure synthesis process, (NN)1*
predicts the interface differential displacements,
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to a new location.  By inputting the negative

interface differential displacements, 
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(NN)2*, the interface forces are determined.

Results of interface forces and moments predicted by
neural networks are compared with results from
finite element analysis in which multipoint
constraints are used to connecting substructures.
Figures 15 and 16 show the comparisons of the
neural network prediction of shear forces (F) and
bending moments (M), respectively, at three
connecting points along the interface and those
predicted by finite element analysis of the assembled
structures.  Good correlation exists between the
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finite element results and the neural network
predictions.
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Figure 15. Comparison of interface forces predicted
by neural network synthesis method and
finite element analysis.
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Figure 16. Comparison of interface moments
predicted by neural network synthesis
method  and finite element analysis.

Once the interface forces and moments are
determined, the responses of each substructure are
instantaneously obtained from their representative
neural nets, (NN)1 and (NN)2, respectively.  The
capability of instant response prediction by neural
networks for examining the effect of design change
in real time is very suitable for the future immersive

Òvirtual realityÓ design environment.  Figure 17
shows the deformed shape predicted by (NN)1 and
(NN)2 for a moving line load located at 6-in.  from
the left end.  The displacement compatibility at
Point A, B and C is well maintained.

Figure 17. The deformed shape predicted by (NN)1

and (NN)2.

   Concluding Remarks

This study found that it is feasible to predict an
assembled structureÕs response from the synthesis of
neural network substructure representations.  Two
approaches have been used in this study, a
superposition approach and an interface displacement
collocation approach.  The superposition approach is
only valid for statically determinate beam
substructures and rigidly connected substructures.
The interface displacement collocation approach is
more general and can be used for statically
indeterminate beam substructures and multipoint
connected plate substructures.  The responses
predicted by the neural network synthesis method are
in good agreement with the responses predicted by
closed form analysis and finite element analysis.

Although generating the training data, creating
neural networks for each substructure, and
synthesizing them can be time consuming; these
tasks, fortunately, only need to perform once and can
be done beforehand.  The response of an assembled
structure can then be obtained almost
instantaneously by synthesizing various neural
network substructure representations.  This allows
the effect of design changes on structural response to
be examined nearly in real time.

There are still many issues to be resolved
before this substructure neural network synthesis
method can be a viable future design tool.  Among
them are (1) how to reduce the large amount of
training data required for multipoint connected
substructures, (2) how to improve the training
process when the size of a neural net becomes large,
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and (3) how to better determine the range of interface
forces for training.  

   Appendix - Feed-forward Neural Network

Figure A shows the configuration of a feed-
forward network with two hidden layers.  The
mathematical expression of this neural network can
be written as

        
y3=F3(w3*F2(w2*F1(w1*x)))

where x  is the input vector; y1  and y2  are the
intermediate output vectors from the hidden layers;
y3  is the output vector; w1 , w2 , and w3  are the
weight matrices; * is a multiplication operator, F1 ,
F2 , and F3  are transfer functions ÒneuronsÓ of the
first hidden layer, the second hidden layer, and the
output layer.  These transfer functions can be a
Sigmoid transfer function,

                   

   F x e x( ) /( )= + -1 1

or hyperbolic tangent function,

  F x x( ) tanh( )= .

For linear approximation, a linear transfer
function may be used.  It is recommended that the
input data and output data be mapped into an interval
[0.1,0.9] to speed up the training process.
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Figure A.  A configuration of a typical feed-forward 
   network.
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Table 1.   Interface forces and moments predicted by neural network synthesis method and  
              closed form solution.

Case a (in.) b(in.) Force(lbs)
(NN)

Force(lbs)
(Ref.  9)

Moment(in.-lb)
(NN)

Moment(in.-lb)
(Ref.  9)

1 4.25   8.5 -4.435 -4.315   67.225   68.738
2 4.75   9.5 -5.046 -5.139   88.688   87.116
3 5.25 10.5 -6.008 -5.972 106.083 107.953
4 5.75 11.5 -6.900 -6.796 134.879 131.332


